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We studied synchronization between prisoner’s dilemma games with voluntary participation in two
Newman-Watts small-world networks. It was found that there are three kinds of synchronization: partial phase
synchronization, total phase synchronization, and complete synchronization, for varied coupling factors. Be-
sides, two games can reach complete synchronization for the large enough coupling factor. We also discussed
the effect of the coupling factor on the amplitude of oscillation of cooperator density.
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There has been a long history of studying game theory.
Some restricted version of the Nash equilibrium concept as
early as 1838 was used by the French economist Augustin
Cournot to solve the quantity choice problem under duopoly
�1�. Since the comprehensive seminal book of Neumann and
Morgenstern, game theory has become a powerful frame-
work to investigate evolutionary fate of individual traits un-
der differing competition �2�. In recent years, it has been
applied successfully to problems in biology �3�, psychology,
computer science, operation research, political science, mili-
tary strategies, economics, and so on �4–6�.

The prisoner’s dilemma game �PDG� stands as a para-
digm of a system which is capable of displaying both coop-
erative and competitive behaviors through pairwise interac-
tions. After the PDG was first applied by Axelrod on a lattice
�7�, spatial prisoners’ dilemma games �SPDGs� have been
studied in various kinds of network models. In the general
PDG, each of two players has two strategies, cooperator �C�
or defector �D�. If both of them choose the C�D�, the player
will get payoff R�P�. When the D betrays the C, the D will
win the income T and the C gets S. Four elements satisfy the
order ranking T�R� P�S and usually the additional con-
straint �T+S��2R in repeated interaction. So, the mutual
cooperation leads to the highest return for the community
and defection is the optimal decision regardless of the other
player. In SPDG, the players are located on the nodes. Each
player updates his strategy at discrete time steps and has a
probability of mimicking his neighborhood strategies.

Szabó et al. �8� developed SPDG with voluntary partici-
pation, in which players take one of the three strategies, C,
D, or loner �L�. In the traditional PDG, every player partici-
pates in this game compulsorily. However, players might
drop off risky social enterprise. They do not participate in the
game temporarily and earn a smaller payoff � �0���R� on
their individual efforts. L is better than a pair of D, but is less
than two C. If one of the two players chooses L, the other
player is forced to choose L. The payoff is determined by the
matrix in Table I.

The purpose of this paper is to describe some interesting
peculiarities between two local stock markets or two stocks

in one market by the model of PDG with voluntary partici-
pation and Newman-Watts small-world �NWSW� networks
�9�. The stock trading can be regarded as a prisoner’s di-
lemma game. Shareholders gain if everyone chooses to co-
operate. If any large shareholders choose to sell, the remain-
ing shareholders will likely lose. NWSW can mimic the
properties of social networks �9�.

There are economic phenomena that one local stock mar-
ket follows the fluctuations of other stock markets and occa-
sional synchronous events happen among the individual
stocks. The correlation between different stock markets has a
pivotal role in value-at-risk measures, optimal portfolio
weights, hedge rations, and so on �10�. The synchronous
events among the individual stocks are also important to the
stock market asymmetry �11�. In Ref. �11�, Donangelo be-
lieves that the synchronous events are caused by the fear
factor. However, why do shareholders not feel excited to-
gether when there are big chances to obtain a profit? Gener-
ally speaking, this phenomenon is induced by the interac-
tions among shareholders of different stocks and in different
domestic financial markets. In our opinion, the synchroniza-
tion is caused by conformity. It means that when we find
ourselves in the minority in a group, we could change our
decision to avoid discomfort caused by that situation. From
the social psychology point of view, we understand the fact
that conformity is pervasively applicable �12�.

Our model is defined as follows. We consider two NWSW
networks with the same size and the same rewired bound p
but different detailed initial structures. The NWSW network
is obtained in practice by the following procedures: �i� Start-
ing with a two-dimensional lattice network with periodic
boundary, each player is located on the node with four neigh-
bors. �ii� The long range links are randomly rewired with a
certain fraction p.
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TABLE I. The payoff matrix of spatial prisoners’ dilemma game
with voluntary participation.

Player 1 or player 2 C D L

C R \R S \T � \�

D T \S P \ P � \�

L � \� � \� � \�
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Every node in the networks is an agent in the game. Each
agent is a pure strategist and can only take one of the three
strategies �C ,D ,L�. In each simulation time step, all agents
play the PDG with their neighborhoods. The parameters in
the payoff matrix are R=1, S= P=0, T=b �1.0�b�2.0�,
and �=0.3, where b is regarded as temptation. At the next
time step, the ith player changes its strategy by following one
of its neighborhoods that is selected with equal probability.
The probability of this change is defined as

W =
1

1 + exp�− �Ej − Ei�/��
, �1�

where Ei, Ej are the ith and jth players’ total payoffs at the
previous round. �=0.1 denotes the noise to permit irrational
choices. The payoffs of the players will not be counted in the
next round. In the case of �=0, the strategy of player j is
always adopted provided Ej �Ei. We found that � does not
have an obvious effect in our model if it is within realistic
limits �8�. So, in our model, we only have two parameters,
the rewired fraction p and the temptation b.

In order to model the conformity we make an assumption
that agents could be affected by the other network. The point
of our assumption that the network could not affect its agents
is that people usually cannot obtain the perfect information
from their group and their neighborhoods will affect their
judgment of the global situation. We define a coupling factor
F to actualize this assumption. Now, we begin by describing
two interplayed PDGs in NWSW networks with the follow-
ing modifications: �i� At each step, each agent chooses strat-
egy C with a probability F�Cother, where Cother is the C
density in the other network. �ii� The agent will search for a
better strategy according to the rule mentioned above.

Clearly, the larger F, the easier one agent is influenced by
the agents in the other network. For F=0, all agents play
PDGs in the network without interplay. A similar model that
the players in a PDG are influenced by external constraints
has been studied by Szabó �13�.

Works by Szabó, Hauert, and Wu reported a comprehen-
sive study of this model in the case of F=0 �8,14,15�. One of
the most important characters of this model is the persistent
global periodical oscillations of three different strategies. If
most of the players select C, D will be more profitable; how-
ever, when D is dominative, L will make a steady income;
after L alleviates the threat of D, C attracts the L to converse.
So, three strategies implement a rock-scissors-paper–type cy-
clic dominance. However, the periodical oscillations of strat-
egies in two different NWSW networks do not show the
same amplitude and phase �see Fig. 1�. The reason for this
difference is that two network structures are not exactly iden-
tical and the evolution of SPDG is random.

To measure the differences �or synchronization� between
PDGs in two NWSW networks, one conspicuous parameter
is �C. It is defined as

�C =
1

N
�
t=0

N

�c1�t� − c2�t�� , �2�

where c1�t� and c2�t� are the C density at step t in two net-
works. Clearly, �C=0 means the complete synchronization

state. Because there exists the global period oscillation of
three strategies in this model, one can define the phase of
strategy C in every time step. In this paper, we use Definition
B in Ref. �16�, and we use the crossing of mean C density as
the beginning of the cycle. To study the phase of oscillation,
one sets �� as

�� =
1

N
�
t=0

N

��1�t� − �2�t�� , �3�

where �1�t� and �2�t� are the phases of strategy C at step t in
two networks. ��=0 indicates there are no phase differences
between PDGs in two NWSW networks. The maximal phase
difference is � and ��=� /2 means no phase synchroniza-
tion. However, when two networks reach a synchronization
state with constant phase difference �=� /2, we cannot dis-
tinguish synchronization from no synchronization. To avoid
this puzzle, another parameter Q defined by Kuramoto �17�
is introduced:

Q = � 1

N
�
t=0

N

ei��1�t�−�2�t��� . �4�

In the case of phase synchronization, all vectors in the com-
plex space of ei��1�t�−�2�t�� have the same direction, and Q is
close to 1. Q=1 means total synchronization and 0�Q�1
means partial synchronization, while for Q=0 there is no
synchronization at all.

Figure 2 shows the three synchronization parameters de-
pending on p for PDGs in two NWSW networks with vari-
ous b for F=0. Considering that strategy density in this
model is periodical oscillation, after the initial transient state,
we recorded 25 000 steps as a sampling to calculate these
parameters. And, the behaviors of this model will be affected
by the size of the network and random seed. All simulations
in this paper are performed in networks with 200�200 play-
ers and random initial states with an equal fraction of three
strategies. All results presented in this paper are the average
of 20 trials with different random seed. Obviously, �� fluc-
tuates around � /2, and Q is close to 0. This clearly demon-
strates that the synchronization state does not exist. For p
	0.2 or b�1.4, �C is very small. For 1.5	b	1.9, �C
increases monotonically with p. As to b�1.9, the oscilla-
tions of strategies become large enough to inevitably lead to

FIG. 1. �Color online� The oscillations of C strategy in two
different NWSW networks. Parameters are b=1.6 and p=0.01.
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the extinction of one strategy. The amplitude of oscillation
depends on p and temptation b is conformed by Szabó and
Hauert �8�.

In Fig. 3, we plot how three parameters �C, ��, and Q
vary with the coupling factor F. Clearly, it shows that the
synchronization state exists when F is large enough. For
small b b	1.3, �C is very close to 0 and it looks like an
identical synchronization with different phases. For larger b,
by enhancing F enough, the networks should reach a syn-
chronization with ���0 and Q�1.

It is interesting that three parameters do not always in-
crease or decrease monotonously with F. For example, when
b=1.8 and p=0.05, all three parameters increase up to the
first peak at F=0.004 which indicates that two networks are
not independent and there is a phase discrepancy between
them. It means that a partial phase synchronization emerges
between two networks. The largest phase discrepancy in this
stage is close to �. As F increases near 0.014, three param-
eters decrease to their level at F=0 and the partial phase
synchronization is broken. There exists a gap in Figs. 3�c�,

FIG. 2. �Color online� The differences of C strategy between two PDGs without interplay �F=0�. The red solid line in �b� is
��=� /2.

FIG. 3. �Color online� From top to the bottom p=0.1, 0.075, and 0.05. The red solid line is ��=� /2.
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3�f�, and 3�i� at F=0.014. This gap �the first gap� is the
boundary between partial and total phase synchronization.
Until the F reaches the range 0.03�F�0.04, two networks
become correlative once again to reach a total phase syn-
chronization. In this range, �C and �� have an abnormal
bump. It denotes an augmenting phase discrepancy in phase
synchronization. After this slight improvement of coupling,
two networks reach complete synchronization. However, we
find that Q has a small gap �the second gap� at F=0.04. This
gap becomes the boundary between complete and phase syn-
chronization. As the above discussion, an interesting phe-
nomenon is that the effect of F is not continuous. In order to
achieve a new synchronization, the old one should be broken
down first.

�C and �� increase with the structural parameters p and
b in the partial synchronization stage. p and b are important
to the position of the first gap. The larger the p and b, the
larger the F for the first gap position. Moreover, Q is closer
to 1 for larger p and b with the same F on the partial syn-
chronization. It can be seen from Fig. 3 that the increase of p
makes the process of synchronization more difficult. The ab-
normal bump of �C and �� and the second gap disappear
gradually on larger p and smaller b. Three different kinds of
synchronization can only be observed in the case of large b
and small p. Since the large enough amplitude of oscillation
inevitably leads to the extinction of one strategy, the syn-
chronization will become unstable for large p and b.

Figure 4 presents how the coupling F affects the ampli-
tude of oscillation of C density. It was found that at the
partial phase synchronization stage the amplitude decreases
with the coupling factor F. In the regime where the �� has
the abnormal bump, the amplitude increases slightly. Then,
the amplitude increases monotonously with larger F. Com-
paring the amplitude with ��, it is easy to find that the
behaviors of �� and amplitude with F are contrary. It is
conjectured that there is a positive feedback for the interplay
between games in two networks.

In this work, we discussed the effect of the interplay be-
tween two prisoner’s dilemma games with volunteering in
NWSW networks. By defining the coupling factor F between
two different networks based on the conformity psychology,
it was found that the large enough F will lead to synchroni-
zation between two networks. We concluded that this model
captures the synchronization characteristic in stock markets.
To measure the detailed information of synchronization, we
introduced three parameters, ��, �C, and Q. It shows that
there are three different kinds of synchronization for differ-
ent F from our extensive simulations. The network structure
p and the temptation b play a very important role on the
synchronization between two networks.
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FIG. 4. The amplitude of the oscillation of C density for varied
coupling F. Parameters are b=1.6 and p=0.05.
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